Система оценивания экзаменационной работы по физике Задания с выбором ответа

За правильный ответ на каждое задание с выбором ответа ставится по 1 баллу. Если указаны два и более ответов (в том числе правильный), неверный ответ или ответ отсутствует – 0 баллов.

№ задания	Ответ	№ задания	Ответ
A1	2	A14	4
A2	2	A15	2
A3	2	A16	3
A4	4	A17	3
A5	3	A18	4
A6	3	A19	1
A7	2	A20	3
A8	1	A21	3
A9	3	A22	1
A10	4	A23	1
A11	1	A24	4
A12	2	A25	1
A13	2		

Задания с кратким ответом

Задание с кратким ответом считается выполненным верно, если в заданиях В1–В4 правильно указана последовательность цифр.

За полный правильный ответ на каждое задание ставится по 2 балла; если допущена одна ошибка -1 балл; за неверный ответ (более одной ошибки) или его отсутствие -0 баллов.

№ задания	Ответ
B1	11
B2	13
В3	34
B4	11

КРИТЕРИИ ОЦЕНКИ ВЫПОЛНЕНИЯ ЗАДАНИЙ С РАЗВЁРНУТЫМ ОТВЕТОМ

Решения заданий C1–C6 части 3 (с развёрнутым ответом) оцениваются экспертной комиссией. На основе критериев, представленных в приведённых ниже таблицах, за выполнение каждого задания в зависимости от полноты и правильности данного учащимся ответа выставляется от 0 до 3 баллов.

С1При укладке рельсов железной дороги между ними оставляют небольшой зазор в 2-3 см. Для чего это делают? Ответ поясните, ссылаясь на физические закономерности.

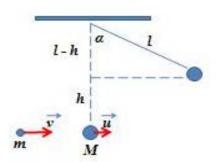
Возможное решение

Решение.

- 1. Небольшой зазор в 2-3 см оставляют для учета теплового расширения рельсов летом.
- 2. Так как перепад температур в течение года может достигнуть 60^{0} C.
- 3. Если зазор не оставлять, то при расширении рельсов летом произойдет деформация железной дороги.

Критерии оценивания выполнения задания	Баллы
Приведён правильный ответ и представлено полное верное объяснение (в данном	3
случае – п.1, 2, 3) с указанием наблюдаемых явлений (в данном случае – тепловое	
расширение).	
Дан правильный ответ, и приведено объяснение, но в решении содержится один из	2
следующих недостатков.	
В объяснении не указаны одно из явлений или один из физических законов,	
необходимых для полного верного объяснения.	

11771	
ИЛИ	
Объяснения представлены не в полном объёме, или в них содержится один	
логический недочёт	
Представлено решение, соответствующее одному из следующих случаев.	1
Дан правильный ответ на вопрос задания, и приведено объяснение, но в нем не	
указаны явления или физический закона, необходимых для полного верного	
объяснения.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы, закономерности, но	
имеющиеся рассуждения, направленные на получение ответа на вопрос задания, не	
доведены до конца.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы, закономерности, но	
имеющиеся рассуждения, приводящие к ответу, содержат ошибки.	
ИЛИ	
Указаны не все необходимые для объяснения явления и законы, закономерности, но	
имеются верные рассуждения, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2, 3 балла	


С2 Пластилиновая пуля массой 9 г. летит горизонтально со скоростью 20 м\с и попадает в груз, неподвижно висящий на нити длинной 40 см. В результате этого, груз с прилипший к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен 60°. Какова масса груза?

Возможное решение

$m = 9\Gamma = 9*10^{-3}$ $l=40c_{\rm M}=0.4~{\rm M}$ $\alpha = 60^{\circ}$ $\vartheta = 20 \text{ M/c}$

Решение:

Согласно закону сохранения импульса $m\vartheta = (m+M)\vartheta_x$, откуда

$$\cdot 9 \ \vartheta_x = \frac{m}{m+M} \vartheta(1) \qquad \vartheta_x \text{---скорость груза после удара}$$
 Согласно закону сохранения энергии

$$\frac{(m+M)\theta^2}{2} = (m+M)gh(2)$$
, где $h=l-l\cos\alpha = l(1-\cos\alpha)$

Подставляя (1) в (2) получим

$$(m+M) \cdot (\frac{m}{(m+M)})^2 \vartheta^2 = 2(m+M)gl(1-\cos\alpha)$$

$$m^2\vartheta^2 = 2(m+M)^2 gl(1-\cos\alpha)$$

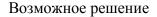
$$m + M = \sqrt{\frac{m^2 \vartheta^2}{2gl(1-\cos\alpha)}}$$

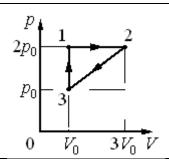
$$m^{2}\vartheta^{2} = 2(m + M)^{2} \operatorname{gl}(1-\cos\alpha)$$

$$m + M = \sqrt{\frac{m^{2}\vartheta^{2}}{2\operatorname{gl}(1-\cos\alpha)}}$$

$$M = \frac{m\vartheta}{\sqrt{2\operatorname{gl}(1-\cos\alpha)}} - m = m\left(\frac{\vartheta}{2\operatorname{gl}(1-\cos\alpha)} - 1\right);$$

$$M = 9 \cdot 10^{-3} \left(\frac{20}{\sqrt{20 \cdot 0.4 \cdot \frac{1}{2}}} - 1 \right) = 9 \cdot 10^{-3} = 81(\Gamma)$$


Ответ:81 г


Критерии оценивания выполнения задания

Баллы

Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы, закономерности; применение	3
которых необходимо для решения задачи выбранным способом (в данном случае:	
законы сохранения импульса и механической энергии.	
II) описаны все вводимые в решении буквенные обозначения физических величин	
(за исключением обозначений констант, указанных в варианте КИМ, и	
обозначений, используемых в условии задачи);	
III) представлен схематический рисунок с указанием сил, поясняющий решение;	
IV) проведены необходимые математические преобразования (допускается	
вербальное указание на их проведение) и расчёты, приводящие к правильному	
числовому ответу (допускается решение «по частям» с промежуточными	
вычислениями);	
V) представлен правильный ответ с указанием единиц измерения искомой	
величины	
Правильно записаны все необходимые положения теории, физические законы,	2
закономерности, и проведены необходимые преобразования. Но имеются	
следующие недостатки.	
Записи, соответствующие пункту II, представлены не в полном объёме или	
отсутствуют.	
или	
Пункт III представлен не в полном объёме, содержит ошибки или отсутствует.	
ИЛИ	
В решении лишние записи, не входящие в решение (возможно, неверные), не	
отделены от решения (не зачёркнуты, не заключены в скобки, рамку и т.п.).	
ИЛИ	
В необходимых математических преобразованиях или вычислениях допущены	
ошибки, и (или) преобразования/вычисления не доведены до конца.	
или	
Отсутствует пункт V, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев.	1
Представлены только положения и формулы, выражающие физические законы,	•
применение которых необходимо для решения задачи, без каких-либо	
преобразований с их использованием, направленных на решение задачи, и ответа.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая для решения	
задачи (или утверждение, лежащее в основе решения), но присутствуют логически	
верные преобразования с имеющимися формулами, направленные на решение	
задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения задачи (или в	
утверждении, лежащем в основе решения), допущена ошибка, но присутствуют	
логически верные преобразования с имеющимися формулами, направленные на	
решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла	0

С3 Изменение состояния постоянной массы одноатомного идеального газа происходит по циклу, показанному на рисунке. При переходе из состояния 1 в состояние 2 газ совершает работу $A_{12} = 5$ $_{\rm K}$ Дж. Какое количество теплоты газ отдает за цикл холодильнику?

1Дано:

$$A12 = 5 кДж = 5 \cdot 10^3 Дж$$

 $Q_{xoл}$. -?

Решение:

 $\overline{\text{При переходе газа из состояния 1 в состояние 2, работа } A_{12} = 2\rho_0 \ 2V_0 = 4\rho_0 V_0 (1)$

Согласно первому закону термодинамики, количество теплоты, переданное газом за цикл холодильнику $|Q_{xon}| = |Q_{23}| = (U_2 - U_3) + A_{23}$

Учитывая, что

$$U_2 = \frac{3}{2} 2 \rho_0 3V_0 = 9\rho_0 V_0$$
 $U_3 = \frac{3}{2} \rho_0 V_0$

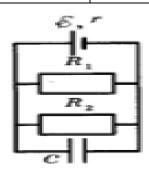
Работа при переходе $2 \to 3$ будет равна площади фигуры под графиком $A_{23} = \frac{\rho 0 + 2 \rho 0}{2} \cdot 2V_0 = 3 \; \rho_0 V_0$

$$A_{23} = \frac{\rho_0 + 2\rho_0}{2} \cdot 2V_0 = 3 \rho_0 V_0$$

Следовательно,
$$Q_{xon} = (9\rho_0 V_0 - \frac{3}{2} \rho_0 V_0) + 3 \rho_0 V_0 = \frac{15}{2} \rho_0 V_0 + 3 \rho_0 V_0 = \frac{21}{2} \rho_0 V_0$$
(2)

Из (1) получим $\rho_0 V_0 = \frac{A12}{4}$ (3)

$$(3) \rightarrow (2)$$

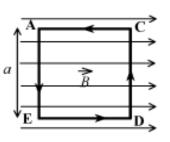

$$Q_{xox} = \frac{21}{2} + \frac{A_{12}}{4} = \frac{21}{8} A_{12} = 13 \text{ кДж}$$
 Ответ: 13 кДж

$Q_{XOJ} = \frac{1}{2} + \frac{1}{4} - \frac{1}{8} R_{12} - 13 R_{Z} R_{A} = \frac{OTBET.}{13 R_{Z} R_{A}}$	
Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы, закономерности,	
применение которых необходимо для решения задачи выбранным способом (в	
данном случае: первое начало термодинамики, формула для внутренней энергии	
идеального газа и уравнение Клапейрона – Менделеева);	
II) описаны все вводимые в решении буквенные обозначения физических величин	
(за исключением, возможно, обозначений констант, указанных в варианте КИМ,	
и обозначений, используемых в условии задачи);	
III) проведены необходимые математические преобразования (допускается	
вербальное указание на их проведение) и расчёты, приводящие к правильному	
числовому ответу (допускается решение «по частям» с промежуточными	
вычислениями);	
IV) представлен правильный ответ	
Правильно записаны все необходимые положения теории, физические законы,	2
закономерности, и проведены необходимые преобразования. Но имеются	
следующие недостатки.	
Записи, соответствующие пункту II, представлены не в полном объёме или	
отсутствуют.	
ИЛИ	
В решении лишние записи, не входящие в решение (возможно, неверные), не	
отделены от решения (не зачёркнуты, не заключены в скобки, рамку и т.п.).	
ИЛИ	
В необходимых математических преобразованиях или вычислениях допущены	
ошибки, и (или) преобразования/вычисления не доведены до конца.	
ИЛИ	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев.	1

Представлены только положения и формулы, выражающие физические законы,	
применение которых необходимо для решения задачи, без каких-либо	
преобразований с их использованием, направленных на решение задачи, и ответа.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая для решения	
задачи (или утверждение, лежащее в основе решения), но присутствуют	
логически верные преобразования с имеющимися формулами, направленные на	
решение задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения задачи (или в	
утверждении, лежащем в основе решения), допущена ошибка, но присутствуют	
логически верные преобразования с имеющимися формулами, направленные на	
решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2, 3 балла	

C4

Источник постоянного тока с ЭДС ϵ и внутренним сопротивлением r=0,6 Ом присоединен к параллельно соединенным резисторам $R_2=6$ Ом и конденсатору. Определите ЭДС ϵ источника, если энергия электрического поля конденсатора равна W=25 мкДж, а его емкость C=2 мкФ.



Образе	ец возможного решения	
Дано: Решение:	д возножного решения	
г = 0,6Ом		
$R_1 = 4 \text{ OM} $	Согласно закону Ома для полной цели	
$R_2 = 6 \text{ Om}$		
$W = 25$ мкДж = $25 \cdot 10^{-6}$ Дж $I =$	$=\frac{\varepsilon}{R+r}$, где $=\frac{R_{1}R_{2}}{R_{1}+R_{2}}$; Следовательно	
$C = 2MKp = 2 \cdot 10^{-6} \Phi$	$I = \frac{\varepsilon}{\frac{R_1 R_2}{R_1 + R_2} + r} (1)$	
ε-?	Энергия конденсатора	
$W = \frac{CU^2}{2}$; $\rightarrow U = \sqrt{\frac{2W}{C}}$; С другой стор	$R_{1+} R_2$	
Сопоставляя (1) и (2) получим $\frac{\sqrt{\frac{2w}{c}}}{\frac{R_1R_2}{R_1+R_2}}$ =	$=\frac{\varepsilon}{\frac{R_1R_2}{R_1+R_2}+r};$	
Учитывая, что $R = \frac{R_1 R_2}{R_{1+} R_2} = 2,4 \text{ Om } = \frac{R_2}{R_1}$	$\frac{\varepsilon}{R+r}$;	
$\varepsilon = \frac{(R+r)\sqrt{\frac{2w}{C}}}{R};$		
$\varepsilon = \frac{3 \cdot \sqrt{\frac{50 \cdot 10^{-6}}{2 \cdot 10^{-6}}}}{\frac{2}{2,4}} = \frac{3 \cdot 5}{2,4} = 6,25$	5(B)	
Критерии оценива	ния выполнения задания	Баллы

Критерии оценивания выполнения задания	ьаллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы, закономерности,	
применение которых необходимо для решения задачи выбранным способом (в	
данном случае: закон сохранения энергии; формулы для расчёта энергии	
заряженного конденсатора,закон Ома для полной цепи	
II) описаны все вводимые в решении буквенные обозначения физических	

величин (за исключением обозначений констант, указанных в варианте КИМ, и обозначений, используемых в условии задачи); III) проведены необходимые математические преобразования (допускается	
III) проведены необходимые математические преобразования (допускается	
вербальное указание на их проведение) и расчёты, приводящие к правильному	
числовому ответу (допускается решение «по частям» с промежуточными	
вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения искомой	
величины	
Правильно записаны все необходимые положения теории, физические законы,	2
закономерности, и проведены необходимые преобразования. Но имеются	
следующие недостатки.	
Записи, соответствующие пункту II, представлены не в полном объёме или	
отсутствуют	
или	
В решении лишние записи, не входящие в решение (возможно, неверные), не	
отделены от решения (не зачёркнуты, не заключены в скобки, рамку и т.п.).	
ИЛИ	
В необходимых математических преобразованиях или вычислениях допущены	
ошибки, и (или) преобразования/вычисления не доведены до конца.	
ИЛИ	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев.	1
Представлены только положения и формулы, выражающие физические законы,	
применение которых необходимо для решения задачи, без каких-либо	
преобразований с их использованием, направленных на решение задачи, и ответа.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют	
Ι 22 Π2014 ΓΙΑΠΑ ΥΤΦΕΝΥΠΕΡΙΆΕ ΠΕΥΡΩΠΙΕΕ Ο ΟΡΙΟΦΕ ΝΕΠΙΕΡΙΆΘΙ ΤΟ ΠΝΑΡΥΤΡΤΟΥΙΌΤ	
логически верные преобразования с имеющимися формулами, направленные на	
логически верные преобразования с имеющимися формулами, направленные на решение задачи.	
логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ	
логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения задачи (или в	
логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют	
логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на	
логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи	
логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на	0

С5На непроводящей горизонтальной поверхности стола лежит жесткая рамка массой т из однородной тонкой проволоки, согнутая в виде квадрата AECD со стороной а (см. рисунок). Рамка находится в однородном горизонтальном магнитном поле, вектор индукции В а который перпендикулярен сторонам AE и CD и равен по модулю В. По рамке течет ток І в направлении, указанном стрелками (см. рисунок). При какой максимальной величине В рамка начнет поворачиваться вокруг стороны СD.

Образец возможного решения

 $\frac{\text{Решение:}}{\text{Решение:}} \text{ На стороны AE и CD будут действовать силы Aмпера } F_{A1} = F_{A2} = \text{I-a-B}. \text{ Момент силы Aмпера относительно оси, проходящей через сторону CD.}$

 $M_A = I \cdot a^2 \cdot B$. Момент силы тяжести относительно оси CD: Mmg $=\frac{1}{2}$ mga. Условияотрыва

$$M_A > M_{mg} \leftrightarrow Ia^2B > \frac{1}{2} mga$$

 $M_A > M_{mg} \leftrightarrow Ia^2B > \frac{1}{2} mga$ $B > \frac{mg}{2Ia}$ OTBET: $B > \frac{mg}{2Ia}$ OTBET: 1500 $\frac{K\Gamma}{M^3}$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы, закономерности, примене-	
ние которых необходимо для решения задачи выбранным способом (в данном	
случае: сила Ампера ,момент силы, формулы для расчета магнитной индукции;	
II) описаны все вводимые в решении буквенные обозначения физических	
величин (за исключением, возможно, обозначений констант, указанных в	
варианте КИМ, и обозначений, используемых в условии задачи);	
III) проведены необходимые математические преобразования (допускается	
вербальное указание на их проведение) и расчёты, приводящие к правильному	
числовому ответу (допускается решение «по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения искомой	
величины	
Правильно записаны все необходимые положения теории, физические законы,	2
закономерности, и проведены необходимые преобразования. Но имеются	_
следующие недостатки.	
Записи, соответствующие пункту II, представлены не в полном объёме или	
отсутствуют.	
ИЛИ	
В решении лишние записи, не входящие в решение (возможно, неверные), не	
отделены от решения (не зачёркнуты, не заключены в скобки, рамку и т.п.). ИЛИ	
В необходимых математических преобразованиях или вычислениях допущены	
ошибки, и (или) преобразования/вычисления не доведены до конца.	
ИЛИ	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев.	1
Представлены только положения и формулы, выражающие физические законы,	
применение которых необходимо для решения задачи, без каких-либо	
преобразований с их использованием, направленных на решение задачи, и ответа. ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая для решения	
задачи (или утверждение, лежащее в основе решения), но присутствуют	
логически верные преобразования с имеющимися формулами, направленные на	
решение задачи. ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения задачи (или в	
утверждении, лежащем в основе решения), допущена ошибка, но присутствуют	
логически верные преобразования с имеющимися формулами, направленные на	
решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла	0

С6 Тело массой m = 0.4 кг, подвешенное на пружине с жесткостью к, совершает малые гармонические колебания с амплитудой, равной 10 см. В тот момент, когда скорость движения тела равна 4 см/с, смещение тела от положения равновесия равно 6 см. Определить жесткость пружины

Обр	разец возможного решения (рисунок не обязателен)
Дано:	
$m = 0.4 \text{ K}\Gamma.$	Решение:
A = 10 cm = 0.1 m	
v = 4 M/c	Согласно закону сохранения энергии
$x=6 \text{ cm} = 6.10^{-2} \text{ m}$	$\frac{kA^2}{2} = \frac{m\vartheta^2}{2} + \frac{kx^2}{2}$, где $\frac{kA^2}{2}$ - полная энергия системы
k -?	

$\frac{m\theta^2}{2}$ и $\frac{kx^2}{2}$ — кинетическая и постоянная энергия
$\frac{k}{2}(A^2 - X^2) = \frac{m\theta^2}{2};$
$\mathbf{K} = \frac{\mathbf{m}\vartheta^2}{\mathbf{A}^2 - \mathbf{X}^2}$
$K = \frac{0.4 \cdot 16}{10^{-2} - 36 \cdot 10^{-4}} = \frac{6.4}{0.0064} = 10^3 \text{ H/M}$

<u>Ответ:</u> 10^3 Н/м

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы, закономерности,	1
применение которых необходимо для решения задачи выбранным способом (в	
данном случае: закон сохранения энергии для гармонических колебании,	
максимальная и кинетическая энергии колебания груза на пружине.	
II) описаны все вводимые в решении буквенные обозначения физических	
величин (за исключением обозначений констант, указанных в варианте КИМ, и	
обозначений, используемых в условии задачи);	
III) проведены необходимые математические преобразования (допускается	
вербальное указание на их проведение) и расчёты, приводящие к правильному	
числовому ответу (допускается решение «по частям» с промежуточными	
вычислениями);	
IV) представлен правильный ответ с указанием единиц измерения искомой	
величины	
Правильно записаны все необходимые положения теории, физические законы,	2
закономерности, и проведены необходимые преобразования. Но имеются	
следующие недостатки.	
Записи, соответствующие пункту II, представлены не в полном объёме или	
отсутствуют.	
ИЛИ	
В решении лишние записи, не входящие в решение (возможно, неверные), не	
отделены от решения (не зачёркнуты, не заключены в скобки, рамку и т.п.). ИЛИ	
В необходимых математических преобразованиях или вычислениях допущены	
ошибки, и (или) преобразования/вычисления не доведены до конца. ИЛИ	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев.	1
Представлены только положения и формулы, выражающие физические законы,	
применение которых необходимо для решения задачи, без каких-либо	
преобразований с их использованием, направленных на решение задачи, и ответа ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая для решения	
задачи (или утверждение, лежащее в основе решения), но присутствуют	
логически верные преобразования с имеющимися формулами, направленные на	
решение задачи.	
или	
В ОДНОЙ из исходных формул, необходимых для решения задачи (или в	
утверждении, лежащем в основе решения), допущена ошибка, но присутствуют	
логически верные преобразования с имеющимися формулами, направленные на	
решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2, 3 балла	U
DDICTADJICTIIA ULCHUK B 1, 2, 3 UAJIJIA	